Devoir maison n^{o} 11

A rendre le Mardi 3 Mars 2020

Exercice 1.: chap 9

On note f la fonction définie, pour tout réel x strictement positif, par : $f(x) = \frac{e^{\frac{1}{x}}}{x^2}$.

- 1. (a) Pour tout entier naturel n supérieur ou égal à 1, montrer que l'intégrale $I_n = \int_n^{+\infty} f(x) dx$ est convergente et exprimer I_n en fonction de n.
 - (b) En déduire que $I_n \sim \frac{1}{n \to +\infty} \frac{1}{n}$.
- 2. Montrer que la série de terme général $u_n = f(n)$ est convergente.
- $3. \quad \text{(a) \'Etablir que}: \quad \forall k \in \mathbb{N}^{\times}, \quad f\left(k+1\right) \leqslant \int\limits_{k}^{k+1} f\left(x\right) dx \leqslant f\left(k\right).$
 - (b) En sommant soigneusement cette dernière inégalité, montrer que :

$$\forall n \in \mathbb{N}^{\times}, \quad \sum_{k=n+1}^{+\infty} u_k \leqslant I_n \leqslant \sum_{k=n+1}^{+\infty} u_k + \frac{\frac{1}{e^n}}{n^2}$$

(c) Déduire des questions précédentes un équivalent simple, lorsque n est au voisinage de $+\infty$, de

$$\sum_{k=n+1}^{+\infty} \frac{e^{\frac{1}{k}}}{k^2}$$

4. Informatique : On considère le programme suivant :

k=1.1000

 $U=exp(ones(1,1000)./k)./k.^2$

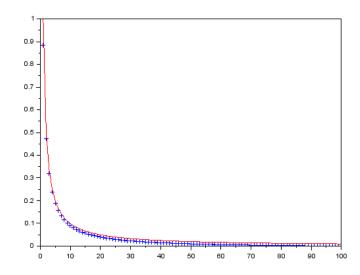
S=cumsum(U)

R=S(1000)*ones(1,1000)-S

plot(R(1:100),'+')

plot(ones(1,100)./k(1:100), color='red')

- (a) Soit $n \in [1, 1000]$. Donner la valeur mémorisée dans la nième colonne $\mathtt{U}(\mathtt{n})$ de la matrice ligne \mathtt{U} .
- (b) En déduire la somme mémorisée dans la nième colonne S(n) de la matrice ligne S.
- (c) En déduire la somme mémorisée dans la nième colonne R(n) de la matrice ligne R.
- (d) On exécute ce programme, on obtient le graphique :



Quel résultat de l'exercice est illustré par ce graphique?

Exercice 2.: chap 8

Soit E un espace vectoriel et $\mathcal{B} = (e_1, e_2, e_3)$ une base de E. Pour tout réel a, on considère l'endomorphisme f_a de l'espace vectoriel E dont la matrice dans la base $\mathcal{B} = (e_1, e_2, e_3)$ est donnée par :

$$M_a = \begin{pmatrix} a+2 & -(2a+1) & a \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

ainsi que la fonction polynômiale Q qui à tout réel x associe le réel :

$$Q(x) = x^{3} - (a+2)x^{2} + (2a+1)x - a$$

I. Recherche des valeurs propres de f_a .

- 1. Montrer que le réel λ est une valeur propre de f_a si et seulement si λ est racine du polynôme Q.
- 2. Vérifier que le réel $\lambda = 1$ est racine de Q.
- 3. En déduire les racines de Q ainsi que leur nombre en fonction de a.
- 4. Lorsque a = 1, l'endomorphisme f_1 est-il diagonalisable?

II. Réduction de la matrice M_a .

Dans toute la suite de l'exercice on suppose a différent de 1.

Soit $\mathcal{B}' = (e'_1, e'_2, e'_3)$ la famille de vecteurs de E définie par

$$\begin{cases} e_1' = a^2 e_1 + a e_2 + e_3 \\ e_2' = e_1 + e_2 + e_3 \\ e_3' = 2e_1 + e_2 \end{cases}$$

- 1. Prouver que \mathcal{B}' est une base de E et déterminer la matrice de passage, qu'on notera P_a , de la base \mathcal{B} à la base \mathcal{B}' .
- 2. Montrer que e'_1 est un vecteur propre de f_a .
- 3. Vérifier que le sous-espace vectoriel F engendré par les vecteurs e'_2 et e'_3 est stable par f_a c'est-à-dire :

$$f_a(F) \subset F$$

- 4. Donner l'expression de la matrice T_a de l'endomorphisme f_a dans la nouvelle base \mathcal{B}' .
- 5. Démontrer par récurrence que pour tout entier naturel n:

$$T^n = \begin{pmatrix} a^n & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$$

où, par convention, on pose $T_a^0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

III. Etude d'une suite récurrente linéaire.

Soit $(u_n)_{n\in\mathbb{N}}$ la suite de nombres réels définie par la relation de récurrence suivante :

$$\left\{ \begin{array}{l} u_0=1,\ u_1=-1,\ u_2=0 \\ \text{pour tout entier naturel } n: u_{n+3}=4u_{n+2}-5u_{n+1}+2u_n \end{array} \right.$$

1. Vérifier que pour tout entier naturel n:

$$\begin{pmatrix} u_{n+3} \\ u_{n+2} \\ u_{n+1} \end{pmatrix} = M_2 \begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix}$$

2. Etablir par récurrence que pour tout entier naturel n:

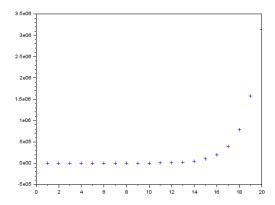
$$\begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix} = P_2 T_2^n P_2^{-1} \begin{pmatrix} u_2 \\ u_1 \\ u_0 \end{pmatrix}$$

- 3. Donner l'expression matricielle de la matrice inverse de P_2 puis exprimer u_n en fonction de n.
- 4. La suite $(u_n)_{n\in\mathbb{N}}$ est-elle convergente?
- 5. Informatique:
 - (a) Compléter le programme suivant de manière à ce que, pour tout $n \in [1, 20]$, la n-ième colonne de la matrice X contienne la valeur du vecteur colonne $\begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix}$:

$$M=[4 -5 2; 1 0 0; 0 1 0]$$

```
X=zeros(3,20)
X(:,1)=[7;0;-1]
for n=1:19 do
    X(:,n+1)=***********
end
```

(b) On ajoute à la fin du programme plot(X(3,:),'+') et après exécution, on obtient le graphique:



Que contient le vecteur ligne X(3,:)? On précisera quelle variable est mémorisée dans la k-ième colonne de ce vecteur.

Commenter le graphique obtenu.

Exercice 3.

Les deux parties sont indépendantes

Partie 1

Une gare dispose de deux guichets. Trois clients notés C_1, C_2, C_3 arrivent en même temps. Les clients C_1 et C_2 se font servir tandis que le client C_3 attend puis effectue son opération dès que l'un des deux guichets se libère.

On définit X_1, X_2, X_3 les variables aléatoires égales à la durée d'opération des clients C_1, C_2, C_3 respectivement. Ces durées sont mesurées en minutes et arrondies à l'unité supérieure ou égale. On suppose que les variables X_1, X_2, X_3 suivent la loi géométrique de paramètre $p, p \in]0;1[$ et qu'elles sont indépendantes. On note q=1-p.

On note A l'évènement : " C_3 termine en dernier son opération". Ainsi l'évènement A est égal à l'évènement : $(\min(X_1, X_2) + X_3 > \max(X_1, X_2))$. On se propose de calculer la probabilité de A.

Partie I

1. Rappeler la loi de X_1 ainsi que son espérance $E(X_1)$ et sa variance $V(X_1)$.

On définit la variable aléatoire $\Delta = |X_1 - X_2|$.

- 2. Calculer la probabilité $P(\Delta = 0)$.
- 3. Soit n un entier naturel non nul.

(a) Justifier:
$$P(X_1 - X_2 = n) = \sum_{k=1}^{+\infty} P(X_2 = k) P(X_1 = n + k)$$
.

- (b) En déduire : $P(\Delta = n) = \frac{2pq^n}{1+q}$.
- 4. (a) Montrer que Δ admet une espérance $E(\Delta)$ et la calculer.
 - (b) Montrer: $E((X_1 X_2)^2) = 2V(X_1)$. En déduire que Δ admet une variance $V(\Delta)$ et la calculer.
- 5. Montrer que l'évènement A est égal à l'évènement $(X_3 > \Delta)$.
- 6. (a) En déduire : $P(A) = \sum_{k=0}^{+\infty} P(\Delta = k) P(X_3 > k)$.
 - (b) Exprimer P(A) à l'aide de p et q.
- 7. Informatique : Nous allons Ecrire plusieurs versions d'un programme qui effectue 10000 simulations de l'épreuve et compare la fréquence de l'évènement A après la probabilité théorique P(A) déterminée précédemment.
 - (a) Première méthode de calcul de f: Compléter la première version suivante du programme décrit ci-dessus; de manière à ce que la variable $\mathbb N$ compte le nombre d'occurrences de l'évènement A au cours des 10000 simulations.

```
p=input('Entrer p : ')
q=1-p

X1=grand(1,10000,'geom',p)
X2=grand(1,10000,'geom',p)
X3=grand(1,10000,'geom',p)

N=0
for k=1:10000 do
    if **************
    end
end

f=*************
P=(1+q^2)/((1+q)^2)

disp(f,"fréquence de A :")
disp(P, "proba de A : ")
```

(b) **Deuxième méthode de calcul de f :** En réalité, la boucle for n'est pas nécessaire car nous pouvons comparer directement deux matrices terme à terme : On rappelle que si A et B sont deux matrices de même taille alors l'instruction C=(A > B) renvoit une matrice booléenne C (i.e. ne contenant que vrai (1) ou faux (0)) dont chaque coefficient $c_{i,j}$ vaut 1 si $(a_{i,j} > b_{i,j})$ est vrai, et vaut 0 sinon.

Remplir la deuxième version du programme suivante, qui calcule ${\tt f}$ en une seule instruction. Elle utilisera une comparaison directe entre deux vecteurs lignes (du type (A>B)) ainsi que la commande ${\tt sum}({\tt j})$.

```
p=input('Entrer p : ')
q=1-p

X1=grand(1,10000,'geom',p)
X2=grand(1,10000,'geom',p)
X3=grand(1,10000,'geom',p)
```

```
f=************
P=(1+q^2)/((1+q)^2)

disp(f,"fréquence de A :")
disp(P, "proba de A : ")
```

(c) Troisième méthode de calcul de f : On rappelle que si U est un vecteur ligne booléen, l'instruction find(U) renvoit la liste des numéros de colonnes contenant 1 (vrai).

Remplir à nouveau le programme précédent mais en utilisant les commandes find() et length()

```
p=input('Entrer p : ')
q=1-p

X1=grand(1,10000,'geom',p)
X2=grand(1,10000,'geom',p)
X3=grand(1,10000,'geom',p)

f=**************
P=(1+q^2)/((1+q)^2)

disp(f,"fréquence de A :")
```

disp(P, "proba de A : ")

à la place de l'instruction sum().

Partie II

Dans cette partie, X est une variable aléatoire suivant la loi géométrique de paramètre $p, p \in]0;1[$ et Y est une variable aléatoire suivant la loi exponentielle de paramètre $\lambda, \lambda \in]0;+\infty[$. On note q=1-p.

On suppose que X et Y sont indépendantes, c'est à dire :

$$\forall k \in \mathbb{N}^*, \quad \forall t \in [0; +\infty[, \quad P((X=k) \cap (Y \leqslant t)) = P(X=k)P(Y \leqslant t)$$

- 1. Rappeler une densité de Y ainsi que son espérance et sa variance.
- 2. On définit la variable aléatoire $Z = \frac{Y}{X}$.
 - (a) Montrer : $\forall t \in [0; +\infty[, P(Z \geqslant t) = \sum_{k=1}^{+\infty} P(X = k)P(Y \geqslant kt).$
 - (b) En déduire : $\forall t \in [0; +\infty[, P(Z \geqslant t) = \frac{pe^{-\lambda t}}{1 qe^{-\lambda t}}.$
 - (c) Montrer que la variable aléatoire Z admet une densité et déterminer une densité de Z.
- 3. Informatique : Dans cette question on choisit p = 1/3 et $\lambda = 1$.
 - (a) Ecrire un programme en Scilab qui effectue 10000 simulations de la variable Z puis trace sur la même figure :
 - \bullet L'histogramme des fréquences obtenues sur l'intervalle [0, 10] découpé en classes modales de longueur 0, 1. et,
 - \bullet la courbe de la densité de Z sur le même intervalle.
 - (b) Après exécution, on obtient le graphique suivant :



Commenter.